On the Number of Higher Order Delaunay Triangulations
نویسندگان
چکیده
Higher order Delaunay triangulations are a generalization of the Delaunay triangulation which provides a class of well-shaped triangulations, over which extra criteria can be optimized. A triangulation is order-k Delaunay if the circumcircle of each triangle of the triangulation contains at most k points. In this paper we study lower and upper bounds on the number of higher order Delaunay triangulations, as well as their expected number for randomly distributed points. We show that arbitrarily large point sets can have a single higher order Delaunay triangulation, even for large orders, whereas for first order Delaunay triangulations, the maximum number is 2. Next we show that uniformly distributed points have an expected number of at least 21 first order Delaunay triangulations, where ρ1 is an analytically defined constant (ρ1 ≈ 0.525785), and for k > 1, the expected number of order-k Delaunay triangulations (which are not order-i for any i < k) is at least 2k, where ρk can be calculated numerically.
منابع مشابه
Minimizing local minima in terrains with higher-order Delaunay triangulations
We show that triangulating a set of points with elevations such that the number of local minima of the resulting terrain is minimized is NP-hard for degenerate point sets. The same result applies when there are no degeneracies for higher-order Delaunay triangulations. Two heuristics are presented to minimize the number of local minima for higher-order Delaunay triangulations, and they are compa...
متن کاملGenerating Realistic Terrains with Higher-Order Delaunay Triangulations
For hydrologic applications, terrain models should have few local minima, and drainage lines should coincide with edges. We show that triangulating a set of points with elevations such that the number of local minima of the resulting terrain is minimized is NP-hard for degenerate point sets. The same result applies when there are no degeneracies for higher-order Delaunay triangulations. Two heu...
متن کاملOptimal Higher Order Delaunay Triangulations of Polygons
This paper presents an algorithm to triangulate polygons optimally using order-k Delaunay triangulations, for a number of quality measures. The algorithm uses properties of higher order Delaunay triangulations to improve the O(n) running time required for normal triangulations to O(kn log k + kn log n) expected time, where n is the number of vertices of the polygon. An extension to polygons wit...
متن کاملDrainage reality in terrains with higher-order Delaunay triangulations
Terrains are often modeled by triangulations. One of the criteria that a triangulation should have is “nice shape” triangles. Delaunay triangulation is a good way to formalize nice shape. Another criterion is reality of drainage in terrains. Natural terrains do not have many local minima and have drainage lines in the bottom of valleys. To achieve these characteristics, higher-order Delaunay tr...
متن کاملTowards a Definition of Higher Order Constrained Delaunay Triangulations
When a triangulation of a set of points and edges is required, the constrained Delaunay triangulation is often the preferred choice because of its well-shaped triangles. However, in applications like terrain modeling, it is sometimes necessary to have flexibility to optimize some other aspect of the triangulation, while still having nicely-shaped triangles and including a set of constraints. Hi...
متن کامل